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Microbiologie et Génétique Moléculaires, Unité Mixte de Recherche 5100, Centre National de la
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Work on the molecular and cellular biology of prokaryotic
microorganisms and their phage continues to be at the cutting
edge in many areas of fundamental research in the life sci-
ences. An important stimulus has been the large number of
complete bacterial and archaeal genome sequences that have
appeared over the past decade and that now are being pro-
duced at a rate of several hundred per year. This information
is the foundation for all of the “-omics” leading to a global
evaluation of the state of the cell under various conditions of
growth or stress. An overview of the sequenced prokaryotic
genomes has also greatly influenced our thinking about the
evolution of life on earth. The EMBO Conference on Molec-
ular Microbiology was the third in a series of meetings aimed
at bolstering interest and support for fundamental research on
prokaryotes (EMBL, Heidelberg, Germany, 19 to 23 October
2006). More than 140 participants from around the world con-
tributed to an intensive 4-day series of talks and poster ses-
sions. The topics included noncoding regulatory RNA in bac-
teria, introduced for the first time at this meeting, as well as
pathogenicity, evolution, signal transduction, and chromosome
dynamics. With about 60 talks and 70 poster presentations,
nearly of all of the participants contributed to the scientific
discussion, generating many lively exchanges. The only signif-
icant complaint about the organization of the meeting was that
some participants felt that there was not enough time to visit
the historic old city of Heidelberg. One interesting comment

from several participants was that they very much enjoyed
attending a relatively broad-based meeting allowing them to
learn about recent developments in areas with potential con-
nections to their own research, an opportunity lacking in more
highly specialized meetings. In this review, we highlight the
talks, mention some of the discussion that they generated, and
cite a selection of recent research articles and reviews by the
speakers.

NONCODING REGULATORY RNA

S. Gottesman (Bethesda, MD), who has greatly contributed
to developing the study of noncoding regulatory RNA in Esch-
erichia coli, opened the meeting with the keynote address,
giving an overview of this exciting new field. She outlined
strategies for identifying and characterizing small RNA
(sRNA) and described several sRNAs that act in bacterial
stress responses (44, 48, 66). For example, the DsrA and RprA
sRNAs positively regulate the general stress sigma factor,
RpoS, and the Fur-dependent sRNA, RyhB, responds to iron
starvation by downregulating a large number of genes that
encode nonessential iron storage proteins. These regulatory
RNAs act posttranscriptionally, permitting a rapid response to
changes in the environment. G. Wagner (Uppsala, Sweden)
talked about the SOS-induced IstR sRNA of Escherichia coli,
which functions to repress the synthesis of a toxic peptide,
TisB, upon DNA damage. IstR can repress the translation of
the tisAB mRNA by binding �100 nucleotides (nt) upstream of
the tisB ribosome-binding site. Wagner proposed a radically
new concept of small RNA-mediated translation repression in
which the sRNA does not mask the ribosome-binding site but
instead prevents ribosome loading at an upstream “ribosome
standby site” (30). H. Aiba (Nagoya, Japan) talked about the
phosphosugar-stress induced sRNA, SgrS, of E. coli that re-
presses the translation of ptsG mRNA (71, 72). He presented
data on complexes of SgrS with RNase E and Hfq and also

* Corresponding authors. Mailing address for H. Brüssow: Nestlé Re-
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Sabatier, 118 Route de Narbonne, 31062 Toulouse, France. Phone: (33)
5-61-33-58-94. Fax: (33) 5-61-33-58-86. E-mail: carpousi@ibcg.biotoul.fr.

� Published ahead of print on 29 June 2007.

6093



demonstrated that SgrS primarily acts to prevent PtsG protein
synthesis upon phosphosugar stress; ptsG mRNA degradation
is believed to be a consequence of the repression of translation.
Aiba then presented work on in vitro RNA silencing of the
ptsG mRNA in a reconstituted system using purified compo-
nents. P. Bouloc (Orsay, France) talked about the identifica-
tion of a new sRNA, RseX, a suppressor of extracytoplasmic
stress mediated by the alternative sigma factor, RpoE (34).
RseX represses the expression of two abundant E. coli outer
membrane proteins (OMPs), OmpA and OmpC, and is a new
member of a rapidly growing list of sRNAs that target mRNAs
encoding OMPs.

J. Vogel (Berlin, Germany) described the first systematic
study of sRNA regulation in Salmonella, a model pathogen.
His talk reinforced the idea that there is an important link
between regulation by sRNAs and the expression of OMPs. In
particular, the RpoE-controlled sRNA, RybB, plays a central
in this process since it can repress all major omp mRNAs of
Salmonella (75). Vogel also presented the identification and
characterization of more than 25 Salmonella sRNAs and their
targets. This work, using pulse expression of the sRNA and
DNA microarray analysis of mRNA levels, suggests that sev-
eral hundred Salmonella mRNAs are regulated by sRNA. F.
Narberhaus (Bochum, Germany) talked about cis-regulatory
elements in mRNA, which are located primarily in the 5�
untranslated regions of heat shock protein genes, which re-
press translation at normal growth temperature (ROSE ele-
ments). He presented a recently solved nuclear magnetic res-
onance structure of a ROSE element showing an unexpected
network of noncanonical base pairs ensuring that the ribo-
some-binding site is inaccessible at normal growth temperature
(20). P. Romby (Strasbourg, France) described the function of
the Staphylococcus aureus RNAIII. Approximately 500 nt in
length, this molecule is one of the longest bacterial regulatory
RNAs known to date. RNAIII is a bifunctional molecule: it
acts as an antisense regulator of Staphylococcus virulence
genes and functions as an mRNA encoding a virulence protein
(51). Romby presented new results showing that RNAIII also
regulates the rot mRNA, which encodes a master regulator of
virulence gene expression, placing RNAIII at the top of a
cascade that orchestrates virulence gene expression in this im-
portant human pathogen.

R. Schroeder (Vienna, Austria) presented work in which
proteins that bind E. coli sRNA were purified by affinity chro-
matography. Hfq, ribosomal protein S1, and the RNA poly-
merase beta subunit were the most abundant proteins detected
in this analysis. Genomic SELEX, i.e., genomic systematic evo-
lution of ligands by exponential enrichment, was performed to
identify RNAs that tightly bind Hfq or RNA polymerase (64).
A large number of antisense RNAs, novel intergenic tran-
scripts, and mRNAs were identified. Genomic SELEX appears
to be a useful tool for identifying low-abundance transcripts
that are difficult to detect in total RNA preparations. In the
archaea and the eukarya, noncoding RNAs are part of ribo-
nucleoprotein complexes (RNPs) that modify rRNA at specific
sites. The box C/D RNAs, a name that refers to their conserved
C and D sequence motifs, are part of RNPs that methylate
rRNA. Specificity is due to an antisense “guide” sequence in
the box C/D RNA that base pairs with the target rRNA se-
quence. E. S. Maxwell (Raleigh, NC) presented recent work on

the assembly and function of the Methanococcus jannaschii
sR8 box C/D RNA into an RNP. The spacing between box C/D
RNA sequence elements is highly conserved and critical for
methylation. Different sRNPs assemble following different
RNA folding pathways. The formation of an RNA duplex
between the sRNP and the rRNA target, and the interaction of
the rRNA with the nearby sRNP core proteins is required for
efficient methylation (43, 90, 101).

RNases AND GENE EXPRESSION

U. Bläsi (Vienna, Austria) presented work on the mecha-
nism of the DsrA and RyhB action in E. coli (2, 94) and asked
whether the double-strand specific endonuclease RNase III
affects the posttranscriptional control mediated by these
sRNAs. This question generated a lively discussion regarding the
relative importance of RNase III versus RNase E, which is a
single-strand specific endonuclease. The consensus was that
RNase E appears to be the major player in the degradation of
the sRNAs, as well as their mRNA targets. Interesting new
biochemical and structural work on bacterial and archaeal
RNases was presented. C. M. Arraiano (Lisbon, Portugal) pre-
sented an analysis of E. coli RNase II, the founding member of
a superfamily of exonucleases present in all three domains of
life (4, 5, 42). Atomic structures of RNase II alone or com-
plexed with RNA were presented. Together with biochemical
data, this work gives new insight into the mechanisms of ca-
talysis, translocation and processivity of this important RNA
processing and degrading enzyme. The archaeal and eukary-
otic exosomes, the bacterial RNase PH, and the bacterial
PNPase form a superfamily of structurally conserved phosphate-
dependent RNA-degrading enzymes. E. Lorentzen (Heidelberg,
Germany) presented new structural data on the archaeal exo-
some complexed with an RNA substrate (61–63). Six RNase
PH-like subunits form a hexamer organized around a central
channel. One face of this hexamer is capped by a trimeric ring of
S1 and KH RNA-binding domains, forming a continuous chan-
nel. The RNA-binding cleft of the active site recognizes 3� ends
mainly by interactions with phosphate groups, thus explaining at
least in part the lack of nucleotide specificity in the degradation
of RNA.

G. de La Cueva-Mendez (Cambridge, United Kingdom)
showed that the Kid toxin encoded by plasmid R1 is an endo-
nuclease that cleaves mRNA. Kid RNase activity is repressed
by the Kis antitoxin. A model was proposed in which Kid/Kis is
part of a presegregational copy number control system (32, 77).
H. Putzer (Paris, France) described the recent identification
and characterization of two novel RNases from Bacillus subti-
lis, RNase J1 and J2, which are paralogues (36). These en-
zymes, which belong to the metallolactamase family of en-
zymes, are functional analogues of the RNase E of E. coli but
not homologues. That is, there is no conservation of protein
sequence or structure. However, like RNase E, RNase J1/J2 is
an endonuclease whose activity is sensitive to the phosphory-
lation state of the 5� end of an RNA substrate. Since the
genomes of B. subtilis and related gram-positive bacteria do
not encode authentic RNase E homologues, RNase J might
substitute for RNase E in RNA processing and degradation. C.
Condon (Paris, France) presented new results on the matura-
tion of the 5� end of the B. subtilis 16S rRNA, which was shown
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to be a two-step process, with the mature 5� end being gener-
ated by RNase J1. Mutation of the predicted catalytic site of
RNase J1 abolished both 16S rRNA processing and cell via-
bility. In vitro results suggest that RNase J1 processes the
precursor 16S rRNA after it is assembled into 70S ribosomes
(12). (See also more recent work from this speaker on RNase
J, which was not covered in the meeting [68].)

M. Ehrenberg (Uppsala, Sweden) presented results clarify-
ing the role and the interplay of IF1, IF2, and IF3 in the
initiation of translation in bacteria. He demonstrated that IF3
has an important role in the selection of mRNA with an AUG
initiation codon. IF1, ribosomal recycling factor RRF and
elongation factor EF-G contribute to the step preceding the
initiation of protein synthesis (6). W. McAllister (Stratford,
NJ) described a novel mechanism of nucleotide misincorpora-
tion during transcription by T7 RNA polymerase (52, 79).
Misincorporation occurs when the same base in the DNA
template is used during two consecutive cycles of nucleotide
addition. McAllister suggested that this type of misincorpora-
tion may be universal for all RNA polymerases and that, in
contrast to DNA replication, halted transcription complexes
may be more deleterious to the cell than the occasional mis-
incorporation of a nucleotide.

GENOMICS, EVOLUTION, AND BACTERIOPHAGE

There was an interesting encounter of three different phi-
losophies in talks on bacterial genomics. T. Dagan (Düsseldorf,
Germany) from W. Martin’s group presented an analysis of the
phylogenetic tree of the prokaryotes with special attention to
its early branching, demonstrating a closer relationship be-
tween bacterial and human proteins than between bacterial
and archaeal proteins (27, 28). This diagnosis contrasts with
the highly resolved tree of life presented by P. Bork (Heidel-
berg, Germany), who sees eukaryotes closer to the archaea
using 30 informational genes (what T. Dagan called “the tree
of 1%”). The principal interest of P. Bork is bioinformatics,
and hence his talk focused on a new tool, called STRING,
which combines experimental, in silico, and semantic informa-
tion to find interacting genes and proteins (98). Another aspect
of Bork’s talk was how to make sense of metagenomics, illus-
trated with data from different environmental niches (97). Al-
though such data are typically very incomplete, they are at the
same time information-rich, documenting the metabolic capac-
ity of an entire microbial community. Finally, J. Parkhill (Cam-
bridge, United Kingdom) represented a third genomics philos-
ophy. As one of the most experienced practitioners of
complete genome sequencing, he was somewhat wary of
metagenomics and stressed the value of sequencing different
clones from the same species or even bacteria from the same
clone grown from individual colonies. He illustrated this con-
cept with data from Bacteroides, revealing extensive reshuffling
in genes encoding surface components and DNA restriction
systems (17). These variations were attributed to mechanisms
involved in avoiding phage infection in the gut where this
bacterium lives commensally. Interestingly, the reshuffling in
genes encoding surface components could be an evolutionary
precursor to the antigenic variability of animal pathogens try-
ing to avoid the immune system.

J. Bamford (Jyväskyä, Finland) presented work on the Tec-

tiviridae, bacteriophage containing a lipid membrane, identi-
fied in the infection of the gram-negative bacterium, E. coli,
and the gram-positive bacterium, Bacillus thuringiensis (1, 80).
The crystal structure of coliphage PRD1 shares structural el-
ements with adenoviruses. Their common coat protein fold has
also been found in viruses infecting insects, algae, mammals,
and amoebae. The structural biology data thus point to a com-
mon ancestor for a large virus family with origins in the distant
evolutionary past. Comparative genomics by H. Krisch (Tou-
louse, France) traced the evolution of T4-like phage that infect
Proteobacteria and Cyanobacteria (25, 38, 39). The chromo-
somes of these phage contain highly conserved structural and
DNA replication genes interspersed with a large number of
novel genes. This work demonstrates a remarkable plasticity in
genome content and explains much of the genome size varia-
tion in this phage family. N. Mann (Warwick, United King-
dom) demonstrated in a marine cyanobacterium a possible
ecological role for novel T4-like phage genes that encode S-
layer proteins and key components of the photosynthetic ap-
paratus (22, 23, 70). Intriguingly, the nonsystematic distribu-
tion of photosynthetic capacities in bacteria might be explained
by the horizontal transfer of photosynthesis genes through
phages. In Synechococcus spp., the transcription of the phage-
encoded genes ensures unabated photosynthetic capacity in
the phage-infected cell. M. Smith (Aberdeen, United King-
dom) reported on a novel serine recombinase from the Strep-
tomyces phage phiC31 (86, 87). Although DNA excision is
normally believed to require helper proteins, gain-of-function
mutants were isolated that can perform both integration and
excision in their absence. The mutations were mapped to the
C-terminal noncatalytic domain of the recombinase, which is
believed to be involved in synapse formation. C. Lambert (Not-
tingham, United Kingdom) presented Bdellovibrio bacterio-
vorus, a bacterial predator with a phage-like life cycle, as a
potential alternative to phage therapy (58, 59). The role of the
multiple flagellum genes for motility and prey hunting, as well
as numerous hydrolytic enzymes expressed during the intracel-
lular phase of the life cycle B. bacteriovorus, was investigated by
genetic analysis.

SIGNAL TRANSDUCTION, PROTEIN INTERACTIONS,
AND NETWORKS

The regulation of complex bacterial promoters was the topic
of an agile and comprehensive presentation by S. Busby (Bir-
mingham, United Kingdom). He introduced the pnir promoter,
in which two transcription factors (NarL and FNR) and three
global DNA-binding proteins (Fis, IHF, and H-NS) intervene
(13, 45). These five proteins form an intricate regulation
system that controls transcriptional activity in response to
environmental conditions. Busby furthermore presented a
genomewide analysis of the distribution of transcription factors
by chromatin immunoprecipitation and DNA microarray anal-
ysis (ChIP on Chip) (46, 47). The use of antibodies to FNR,
H-NS, Fis, and IHF permitted the identification of many target
sequences, with 60% of them falling into intergenic regions. Of
these targets, 67 are shared by H-NS and Fis. RNA polymerase
was often found to be associated, suggesting that H-NS and Fis
might help to bind the RNA polymerase. The interplay of
chromatin topology and transcription in E. coli was discussed
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by G. Muskhelishvili (Bremen, Germany), who addressed the
question how global transcription is coordinated in the ge-
nome. He showed that alterations in the chromatin architec-
ture lead to changes in transcription patterns, suggesting a
homeostatic mechanism in which chromosomal supercoiling
coordinates growth phase-dependent transcription (11). K.
Pflüger (Madrid, Spain) from V. de Lorenzo’s group described
a novel electrophoretic method to separate phosphorylated
proteins directly from intact cells. The procedure was instru-
mental in monitoring the flow of high-energy phosphate
through the abridged phosphoenolpyruvate-carbohydrate phospho-
transferase system of Pseudomonas putida (76). This work sug-
gests that the phosphoenolpyruvate-carbohydrate phospho-
transferase system in this bacterium is not connected to sugar
transport but rather serves as a sensor of the metabolic state of
the cell.

J. Schumacher (London, United Kingdom) discussed tran-
scriptional activation by AAA� enhancer binding proteins in
an informative presentation using PspF (named for phage
shock protein F) of E. coli as an example. PspF drives the
transition of the sigma54-RNA polymerase-promoter complex
from a closed conformation to a transcriptionally active open
conformation in a reaction requiring ATP hydrolysis (82, 83).
The AAA� enhancer binding proteins are part of a larger
family of AAA� proteins involved in diverse cellular activities.
K. Turgay (Berlin, Germany) talked about another AAA�
protein, ClpC, which is a component of the ClpCP protease in
B. subtilis. In addition to removing misfolded proteins, ClpC is
involved in the proteolysis of several regulatory proteins con-
trolling steps in sporulation. The take-home message of the
talk was that ClpC requires adaptor proteins that target the
protease to specific substrates and regulate its activity (55, 56).

P. Aldridge (Newcastle upon Tyne, United Kingdom) intro-
duced his talk with an impressive animation explaining the
steps of flagellum assembly in bacteria. In Salmonella enterica,
one major checkpoint, dictated by the length of the interme-
diate hook-basal body structure, is the substrate specificity
switch of the flagellar type III secretion apparatus (3). Flagel-
lar gene expression is regulated by a cascade of type III secre-
tion chaperones and their substrates. Chaperone antagonism
was the topic of an informative talk by P. Genevaux (Geneva,
Switzerland), who highlighted the role of SecB, trigger factor
(TF), and DnaK/DnaJ in protein folding and secretion (91). A
deletion of the secB gene results in a cold-sensitive phenotype
that can be relieved by knocking out the gene encoding TF
(tig). The antagonistic effect of TF is due to its activity as a
chaperone and is independent of its peptidyl-prolyl cis/trans
isomerase activity. Furthermore, he showed that in a tig-null
mutant more SecA protein and ribosomes are associated to the
inner membrane, suggesting that TF is involved directly or
indirectly in targeting proteins cotranslationally to the sec
translocon.

J. Greenblatt (Toronto, Canada) gave a comprehensive talk
on the identification and analysis of protein complexes. His
presentation was divided into two parts. In the first part he
described the systematic identification of protein complexes in
E. coli by affinity purification using SPA (sequential peptide
affinity) tags inserted into the chromosome (15). The SPA tag
permits efficient purification of protein complexes containing
the tagged gene product using a relatively simple procedure.

Chromosomal tagging avoids overproduction of the target pro-
tein, thus allowing the purification and identification of protein
complexes from cells that are physiologically equivalent to
their wild-type parent. In the second part, Greenblatt intro-
duced the so-called synthetic genetic array technology that
allows the generation of genetic-interaction maps (E-MAP
[epistatic miniarray profile]) (24). This procedure permits the
detection of functional interactions between gene products,
thus providing complementary information to the physical in-
teraction map of gene products. As examples, he presented the
E-MAP of the yeast early secretory pathway and gave insights
into genetic interactions in E. coli.

PATHOGENICITY, VIRULENCE, AND ENDOSYMBIOSIS

A central subject of the session on pathogenicity, virulence,
and endosymbiosis was how bacteria send signals to target
cells. Molecular syringes of different kinds were a popular
topic. G. Cornelis (Basel, Switzerland) charmed the audience
with beautiful pictures of the Yersinia injectisome. This type III
secretion system is evolutionarily related to bacterial flagella
and functionally related to bacteriophage tails (26, 88). In
contrast to phage, which inject DNA into their host bacteria,
bacterial pathogens inject proteins to manipulate their eukary-
otic hosts. Despite the difference in cargo and target cell, there
are surprising similarities between both injection devices; the
tail and syringe employ an analogous length determination
mechanism involving a “tape measure” protein. H. Shuman
(New York, NY) analyzed the proteins transported by another
molecular syringe, the type IV secretion system. The broad
host range of Legionella, which replicates intracellularly in both
amoebae and human phagocytes, was exploited to identify
gene products that perturb organelle trafficking in yeast (84).
These effectors from Legionella not only act on basic eukary-
otic functions, they appear to be encoded by genes that were
acquired from eukaryotes by horizontal transfer (31). B. Uhlin
(Umea, Sweden) described another player in the bacterial se-
cretion game, namely, a type I transport system from patho-
genic gram-negative bacteria. It not only secretes virulence
factors into the medium, it also packages them in outer mem-
brane vesicles for delivery to the target tissue (8). Uropatho-
genic E. coli and Vibrio cholerae transport toxins using these
membrane vesicles. V. Pelicic (London, United Kingdom) de-
scribed a bacterial surface structure mediating adhesion to the
host cell, the type IV pilus of Neisseria. Genetic analysis di-
vided its morphogenesis into four stages: assembly of the fibers
in the periplasm, functional maturation, a peculiar retraction–
counter-retraction step, and emergence of the pili on the cell
surface (16).

Not all virulence is based on secreted factors. For example,
lipids play an important role in mycobacterial pathogenicity,
where they act as a protective barrier and as an immunomodu-
lator. C. Guilhot (Toulouse, France) reported on polyketide
synthases involved in the biosynthesis of mycobacterium-spe-
cific lipids (18). Two transferases are needed to activate these
biosynthetic enzymes, making them attractive targets for drug
treatment. Y. Av-Gay (Vancouver, Canada) presented results
concerning the functions of 11 eukaryotic-like protein kinases
(Pkn) found in Mycobacterium tuberculosis, which are also at-
tractive potential drug targets. A systematic analysis similar to
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the one described by C. Guilhot, combining the strengths of
biochemistry, genetics, and proteomics, was used to character-
ize these kinases. Several examples were presented, including
the PknH protein that was found to be important for the
downregulation of intracellular growth, thus playing a role in
the establishment of the well-known chronic infection by M.
tuberculosis (74).

A relatively consistent observation with pathogenic bacteria
is that virulence factors are frequently encoded on mobile
DNA elements and that virulence genes are actively tran-
scribed during infection but mostly silent during growth in
laboratory cultures. M. Rhen (Stockholm, Sweden) presented
a transcriptome analysis of Salmonella both during infection
and in culture. Using mutational analysis, a phosphate-depen-
dent RNA degrading enzyme, PNPase, was identified as a
negative regulator of virulence gene expression in laboratory
cultures (100). The virulence genes under the control of
PNPase are clustered in two “islands of pathogenicity.” J. Cas-
adesus (Seville, Spain) talked about the regulation of virulence
factors in Salmonella by DNA adenine methylation (Dam) (7,
99). The mechanisms of regulation are diverse. In the fimbrial
operon, adenine methylation prevents transcriptional repres-
sion at the promoter by the nucleoid protein H-NS. On the
other hand, methylation of a control sequence upstream of traJ
prevents binding of the transcriptional activator Lrp. M. Van
der Woude (York, United Kingdom) described the epigenetic
regulation in E. coli of the reversible switching of gene expres-
sion, known as phase variation, which is dependent on Dam
(89, 93). Switching of expression of the OMP, Ag43, involves
interplay between the OxyR transcription repressor and meth-
ylation of its binding site. A mechanism for the inheritance of
the methylation state was proposed.

CHROMOSOME DYNAMICS

The session on chromosome dynamic covered talks on the
different steps in the bacterial cell cycle involving chromosome
replication, chromosome partition, and cell division. B. Michel
(Gif-sur-Yvette, France) reviewed multiple pathways charac-
terized in E. coli permitting the reinitiation of DNA synthesis
at a stalled replication fork. The rescue of stalled forks is a
critical function since chromosome replication in bacteria in-
volves the continuous synthesis of several million base pairs of
DNA. Despite the high processivity of the DNA replication
machinery, stalling probably occurs multiple times during a
single round of replication. The failure to reinitiate a stalled
fork can lead to chromosome instability and cell death. Michel
then described recent work on the role of the DNA helicase
UvrD in reinitiating DNA replication at stalled forks (10, 40,
41). UvrD works in concert with homologous recombination at
the stalled replication fork in a pathway that is independent of
the role of UvrD in mismatch and excision DNA repair. P.
Polard (Jouy-en-Josas, France) talked about PriA, a DNA
helicase involved in replication restart at stalled forks in B.
subtilis (14, 96). Recent results show that PriA localizes with
the B. subtilis DNA replication “factory” and that a protein-
protein interaction between PriA and SSB, the major single-
stranded DNA-binding protein, is necessary to recruit PriA to
stalled forks.

F. Boccard (Gif-sur-Yvette, France) described recent work

showing that the E. coli chromosome is organized into four
macrodomains and two nonstructured regions (35, 92). Each
macrodomain is localized to a specific region in the cell and
follows a characteristic choreography during chromosome rep-
lication and cell division. R. Dame (Amsterdam, The Nether-
lands) reported single-molecule studies on the “bridging” of
duplex DNA by H-NS, a nucleoid protein involved in the
compaction of the bacterial chromosome (29). Chromosome
“unzipping” involves the stepwise breaking of individual H-NS
bridges and requires relatively little force. These results sug-
gest an explanation for how H-NS can compact the chromo-
some without interfering with processes such as transcription
and DNA replication.

J. Errington (Oxford, United Kingdom) talked about the
formation of the septum during cell division in B. subtilis,
presenting recent results on the genes involved in this process,
on the composition and structure of the septum, and on the
dynamics of the closure of the septum (50, 78, 81). J. Lowe
(Cambridge, England) presented structural and functional
data on FtsK, a DNA translocase involved in the partition of
the replicated chromosome into daughter cells. The translo-
case domain of FtsK forms a hexameric ring structure encir-
cling double-stranded DNA and recognizes a specific signal,
the KOPS sequence, involved in controlling the partition of the
replicated chromosomes (67, 85). J. Alonso (Madrid, Spain)
presented genetic and structural work on systems controlling
segregation of the low-copy-number plasmid pSM19035, a
broad-host-range plasmid in the gram-positive bacterium
Streptococcus pyogenes (33, 60). A “random walk” model for
segregation, driven by the binding of the segregation proteins
to the plasmid, was proposed.

COMPETENCE, DNA UPTAKE, AND
MULTICELLULAR BEHAVIOR

Competence is the physiological state in which a bacterium
is capable of importing exogenous DNA. Transformation is the
process in which the imported DNA is integrated into the
genome. B. Maier (Münster, Germany) reported single-mole-
cule experiments on DNA import using live B. subtilis (65).
Exogenous DNA enters at the pole of the elongated bacillus.
Force measurements indicate that a powerful molecular motor
feeds DNA into the cell in a continuous process. D. Dubnau
(Newark, NJ) presented his latest molecular model for the
DNA uptake machinery in B. subtilis (19, 49, 57). This protein
complex consists of a type IV-like pseudopilus that fixes exog-
enous double-stranded DNA to the cell wall and mediates
contact with a DNA receptor protein associated with the mem-
brane channel complex. Retraction of the pseudopilus is pow-
ered by the proton motive force across the membrane creating
a movement that drags the DNA molecule through the chan-
nel. The DNA strands are separated upon internalization; an
unidentified nuclease digests one strand of the DNA as the
other strand translocates into the cytoplasm. In support of this
model Dubnau presented work showing that a DNA helicase
and an ssDNA-binding protein involved in transformation co-
localize with the DNA as it enters the cytoplasm.

P. Graumann (Freiburg, Germany) presented work on the
function and cellular localization of the DNA-binding proteins
RecA, RecN, and Smf during transformation in B. subtilis (53,
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54). J.-P. Claverys (Toulouse, France) reported on the inter-
action between two ssDNA binding proteins in the cytoplasm
during the transformation of Streptococcus pneumoniae (9, 21,
73). DprA binds cooperatively and protects the ssDNA against
nucleases as it enters the cytoplasm. The recombination pro-
tein RecA is then loaded by a protein-protein interaction with
DprA forming a complex that mediates exchange of the
ssDNA with the recipient chromosome. An alternative out-
come of the internalization of the exogenous DNA is degra-
dation. DNA uptake, thus, could have a second role: the supply
of deoxyribonucleotides for chromosome replication.

A link between competence and nutrition was described by
M. Blokesch working in G. Schoolnik’s group (Stanford, CA).
Environmental strains of Vibrio cholerae become competent
upon exposure to chitin (69), which they meet when forming
biofilms on the exoskeletons and molds of copepods, tiny crus-
taceans that are important elements of marine food webs.
Chitin induces the expression of genes involved in the extra-
cellular degradation and uptake of this polysaccharide, as well
as the expression of genes encoding the pseudopilus that me-
diates the import of exogenous DNA. Transformation during
chitin-induced competence could explain much of the mosaic
structure of the V. cholerae genome.

G. Velicer (Tübingen, Germany) capped the last session of
the meeting with a particularly fascinating story on the social
life of bacteria. The main character is a common soil proteo-
bacterium, Myxococcus xanthus, with uncommon characteristics.
It has behavior that ranges from social motility to cooperative
predation and the development of collective spore-bearing
fruiting bodies as a reaction to starvation. Under conditions of
ample food, an obligate cheater arose, which exploited the
social instinct of its comrades. When starvation cycles resumed,
the dominant cheater population crashed, but a social phoenix
ascended from the ashes. The 9-Mb genome of the mutant was
sequenced revealing a single point mutation, which distin-
guishes it from its cheater ancestor, in an uncharacterized
acetyltransferase gene (37, 95).

CONCLUSION

The meeting bought together researchers working on a
broad range of topics in the molecular and cellular microbiol-
ogy of prokaryotic organisms. Certain talks, including those by
J. Parkhill, N. Mann, and G. Velicer, demonstrated that cur-
rent methodologies can be used to link a complex phenotype to
a genotype. Informal discussions about the organization of
future conferences led to the decision to introduce more eco-
logically oriented microbiology into the next meeting since the
panoply of “-omics” developed over the past decade should
begin to permit the analysis at the molecular and cellular level
of complex behavior within microbial communities.
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